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Abstract

A pore network model is presented, that is a geometrical simplification of a porous medium. The network consists of pore
chambers interconnected by pore throats. A recursive algorithm for the simulation of mercury intrusion porosimetry in the
network is presented. Calculations indicate that it is possible to fit simulated mercury intrusion data to experimental data, and
thereby obtain parameters of the pore size distribution and pore topology (pore connectivity). A time-dependent material
balance equation for diffusion on the pore level is set up and solved for the pore network. By calculating the concentration
evolution in the network, the transient diffusivity and the steady-state diffusivity are found. When the network is well
connected, those two diffusivities are equal, but for poorly-connected networks they differ. For migrating solutes that are
non-negligibly small compared to the pore throats, considerable differences between the transient and steady-state
diffusivities were found.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction structure affects the transport properties, a more
detailed description of the material must be sought.

Porous materials often have complicated pore Frequently, the pore structure is approximated by a
structures, with pores of different sizes and shapes, model consisting of parallel pores with a distribution
interconnected in different arrangements. The porous of sizes. Fitting such a model to experimental data
material can in some cases be well described as a would give one a pore size distribution that most
pseudohomogeneous material, in which transport often is different from the actual pore size dis-
phenomena occur in a way similar to the way they tribution. For the case of mercury porosimetry,
would occur in a homogeneous material, that is the which has been analyzed by Lane [1], the intrusion
mathematics of the phenomena is similar. However, of mercury gives information about the narrow necks
in order to obtain an understanding of how the pore of the pore structure, whereas the extrusion gives

information about the size of the pore voids. More-
over, the measured pore sizes will deviate from the*Tel.: 146-18-612-0690; fax: 146-18-612-1844.
actual sizes because of network effects [1]. CurrentE-mail address: mattias.bryntesson@eu.amershambioscienes.com
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pore model which in general does not give the actual effect of molecules adsorbing onto the pore walls
pore size distribution and internal surface area. hindering the subsequent transport through the pore.

Much of the inadequacy of the parallel pore This means [11] that restricted diffusion may be a
approximation can be intuitively grasped by consi- dynamic process, coupled with adsorption. Depend-
dering the terms shadowing or shielding, having the ing on local conditions, one or several of the
meaning of large pores surrounded only by smaller mechanisms may have to be taken into account.
pores. Mercury intruding into such a pore structure According to Zhang and Seaton [12], a pore
will intrude at the pressure corresponding to the network can get close to the percolation threshold if
smaller pores, but the intruded volume at that • the network is poorly connected;
pressure will also include the volume of the larger • the diffusing molecule has a size comparable to
pore. For a diffusion process, such a shielded pore the pore size;
will have high diffusional resistance for communica- • the porous structure is multimodal, and the pores
tion with the outer world, and it will have a large forming the largest mode are close to the percola-
capacity for accumulating molecules. Another term tion threshold.
that is self-explanatory, and that is used for pores Consider a network of connected pores having a
consisting of a cavity with a narrow entrance open- size distribution and a solute whose size is some-
ing, is ink bottle pores. where in between the sizes of the largest and the

By describing a porous medium as a network of smallest pore. Some of the pores will then be
interconnected pores, a fairly general model is permeable to the solute molecules, whereas some
obtained, able to account for shielding. Selecting the pores will be impermeable. The permeable pores will
sizes of the pores and the way they are intercon- then form pore clusters, possibly percolating the
nected, one obtains models for different materials. network. At the percolation threshold, such a cluster
The network consists of pore chambers (sites, nodes appears self-similar and it has been claimed (see e.g.
or vertices) interconnected by pore throats (bonds, Sahimi [13]) that such a percolating cluster is
arcs or edges). partially fractal, and thus diffusion on such a struc-

A model for transport phenomena in porous media ture can be non-Fickian [14–17]. This can be
thus could consist of: (1) the pore network and (2) understood by considering the many dead-end pores
models for the transport phenomena on the local and branches of different sizes that are present. A
(pore) level. Both parts are important, the local diffusing molecule could expect to encounter many
model providing the dynamic and equilibrium prop- blind pores and clusters of pores, making the macro-
erties for each pore, and the network making it scopic motion slower than it would be in a con-
possible to calculate the effective, macroscopic, tinuum.
properties. A network model can in such a way be For a random walk in three dimensions we have
used in the modelling of transport processes such as [13]:
single-phase and two-phase fluid flow, pore diffu-

2kDx l 5 6Dt (1)sion, sorption and capillary condensation [2–5].
When the solute size /pore size ratio is small and

describing the movement of a diffusing particle.the concentration is low, ordinary pore diffusion
From that, Fick’s first law:occurs, whereas when the solute size is of the same

order of magnitude as the pore size, one would J 5 2 D=c (2)
expect size exclusion (molecular sieving) and re-
stricted diffusion. Restricted or sterically hindered that states that the molar flux J is proportional to the
diffusion [6–11] is pore diffusion where the size of diffusivity D and to the concentration gradient =c,
the diffusing molecule is of the same order of can be derived [18]. However, for disordered media
magnitude as the characteristic length of the pore that may not hold, and the diffusion can be non-
structure, thus reducing the effective diffusivity Fickian [13] in the sense that it cannot be adequately
(ultimately to zero, which happens at the percolation modelled by Fick’s first law using a constant value
threshold). In their extended definition of restricted for the diffusivity. This can lead to large deviation in
diffusion, Petropoulos et al. [11] also incorporate the concentration profiles [19–21], and therefore it is
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important to study both the dynamic and the steady- porous media that are used in chromatographic
state mass transfer in such systems. separations. Such a tool would be useful for selecting

According to the above, a system with pore sizes among different media to find the most appropriate
of the same order of magnitude as the size of the for a specific application. It may also be useful for
solute of interest is more likely to be close to the the design of such media.
percolation threshold than a pore system with larger
pore sizes, providing the pore structures have the 1.2. Scope
same topology. In, for example, adsorption in porous
adsorbents, increasing the mean pore size of the The model is a pore network model and its
porous medium can be expected to give faster mass properties are assumed to be obtainable primarily
transfer, but also a lower specific surface area and from mercury intrusion measurements. The work
thus a lower equilibrium adsorption capacity. This also sets out to find limitations in this approach and
trade-off between fast pore transport and high to indicate what additional observations may be
capacity (surface area) makes it possible that oper- useful or needed.
ating in the neighborhood of the percolation thres- Firstly, the modelling of mercury porosimetry is
hold may be optimal in some sense, and thus, the described and some simulation results are shown. By
modelling of such systems is of interest. For porous adjusting the network model parameters, fitting of
media having diffusive transport through a bidisperse the mercury intrusion curve to experimental data
pore structure or media in which the transport is by could be done, and the porous material characterized
both diffusion and convection [22] this could be in terms of the so estimated pore network parame-
applied for the regions of pores having sizes compar- ters. Secondly, the diffusion model, including size
able to the size of the solute of interest. Imdakm and exclusion, is formulated and solved for a few hypo-
Sahimi [23], Petropoulos et al. [11] and Meyers and thetical cases. Size exclusion may be significant in
Liapis [24,25] have calculated transport properties chromatography applications with solutes, e.g. bio-
for pore networks when the solutes have sizes molecules, that are large compared to the pore sizes.
comparable to the pore sizes. This suggests a scheme for doing a priori calcula-

It should be noted that the mapping of a porous tions of transport properties of the porous medium.
medium onto a pore network is not unambiguous.
For a stochastic material, a pore space skeleton can
be found, e.g. using the method by Mohanty [3]. 2. Pore network generation
That method gives a primitive network topology with
a constant connectivity of three which then has to be The network is defined by the local pore properties
reduced to a working network. This reduction ap- and by the network topology. All networks consid-
pears to be the crucial step, since it involves a ered in this work are based on a cubic lattice with
change in topology, e.g. by collapsing groups of bonds connecting sites in an uncorrelated, random
network elements into single elements (bonds or manner (a so-called bond-diluted network). This
sites). The rules for such a collapse would involve gives a variable connectivity (average coordination
some threshold value telling whether two nodes number). The maximum coordination number for a
should be collapsed or not. This threshold rule will node in a cubic network is equal to six when one
then affect the connectivity of the working network. considers nearest neighbors only. Jerauld et al. [26]
As a consequence, for a pore network model, the have shown that network conductivity mainly de-
connectivity can be expected to be strongly corre- pends on the connectivity and not on the type of the
lated with the pore sizes and the spatial correlation of underlying lattice and for any three-dimensional
the pore sizes. network the percolation threshold is reached at a

connectivity of about 1.5 [27]. Therefore, in order to
1.1. Aims have higher connectivity in the model, it suffices to

use the cubic lattice, with the extension that bonds
We wish to develop a simulation tool that allows may connect also second (and higher) nearest neigh-

us to simulate the diffusive properties of the type of bors. Depending on the actual parameters, the lattice
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may have to be considered as a ‘‘distorted cubic’’ throat diameter, Dc is the concentration difference
lattice, since the node–node distances need not be between the two pore chambers connected to the
constant. Similar mappings have been used previous- throat and Dx is a characteristic length for the
ly [23–25]. transport, which is taken here to be a function of the

The local pore properties could be defined in throat diameter. The exact geometrical interpretation
geometrical terms, e.g. as a network of sites, where of pore length could be the distance between two
each site is associated with a spherical pore, inter- pore chambers.
connected by bonds, associated with circular cylin- In this work we have a pore throat diameter
drical pores. Another way would be not to express distribution (‘‘pore size distribution’’) which is gen-
the network in such concrete terms, but instead let erated by a pseudorandom number generator accord-
the pores be defined by e.g. their ‘‘resistance’’ or ing to a predetermined distribution, The pseudo-
‘‘conductance’’ for diffusion or the local critical random numbers are used for assigning values to the
pressure (which here is used for the pressure required throat diameters, so that those are uncorrelated, i.e.
for mercury penetration into an empty pore), and the size of one throat is independent of the size of
thus not specify a pore size distribution, but a any other throat. Porous media may have polymodal
distribution of conductances or critical pressures. and/or spatially correlated pore size distributions,
The advantage with such an approach would be that that can also be handled by the model, but it is not
properties that cannot directly be ascertained from a considered in this work.
specific experiment would not be used when report- The pore size distribution is volume-based, and
ing results from such an experiment. Translating the has a triangular frequency function with the mode
conductance or pressure distribution to a pore size m , the width to the left a m and to the right b m ,v v v v v

distribution would then be a separate task. The i.e. the total width is (a 1 b )m . The triangularv v v

disadvantage would be that one usually has got some distribution is physically unrealistic, but has the
feeling for what the pore size distribution means, e.g. advantage of having a finite interval, outside which
in terms of type of material or resulting properties, the probability is zero. Choosing a normal or log-
but the same feeling for a conductance or pressure normal distribution would be intuitively better, but
distribution would have to be acquired. Also, one then there is a need for truncating the distribution,
may have good reasons for using a specific func- since negative values are infeasible and there is a
tional form for the pore size distribution and assum- non-zero probability of getting very large values,
ing a specific pore geometry (from independent unsuitable for calculations using finite networks. The
information such as direct observation of pore struc- triangular distribution does not have this shortcom-
ture by microscopy or from knowledge about how ing, and it makes it possible to create skewed
the medium was formed). In that case, directly using distributions, as well as arbitrary distributions, by
the geometry would be a reasonable approach. In this combining several triangles much in the same way as
paper, we will use simple geometric interpretations, hat functions can be used to create piecewise linear
and the nodes and bonds are defined as follows. function approximations. Nicholson and Petropoulos

[28] used a set of similar simple distribution func-
tions as models for pore size distributions. In order2.1. Pore throats (network bonds)
to use the volume-based distribution in the model,
the distribution is first converted to a number-basedThe pore throats are considered to be zero-volume
distribution.connections between pore chambers and the diffusive

transport rate of a very small molecule through one
of the throats is given by

2.1.1. Pore shape
2 Often, it is reasonable to assume that the length ofpd Dcti, j]] ]r 5 2 D (3) a throat is of the same order of magnitude as itsp 4 Dx

diameter [5]. This assumes that the pores are some-
i, j what ‘‘compact’’ and not like narrow cracks or slits.where D is the pore diffusivity, d is the porep t
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However, from a geometrical perspective there Kirkpatrick [29] for resistor networks and by Nichol-
should also be a dependence on connectivity, which son and Petropoulos [33] and Petropoulos et al. [1]
can be exemplified as follows. Consider one of the for transport in capillary networks.
bonds connected to a site. Depending on the total It should be stressed that with knowledge about
number of bonds connected to that site, each bond the actual pore structure, more effort should be put
will have an upper limit on its size. The presence of into finding reasonable relations between the model
many bonds would imply that the space around the parameters, if that is possible. One could also
site would have to be shared between those bonds, so imagine a scenario where pore diameter and length
that for the case of many bonds, they would have to are uncorrelated or only weakly correlated.
be narrower (on an average) in order to fit in. The
following approach is suggested in order to account

2.2. Pore chambers (network nodes)for this:
• the connectivity, n , and the porosity ´, are knownt

The pore chambers are considered to be perfectlyparameters, as well as the throat diameter, d ,t
mixed tanks, having a finite volume, derived from adistribution;
given pore size distribution. When the network is• assign diameters from that distribution to the
constructed using a Monte Carlo technique, first thethroats;
pore diameters d are assigned to the throats. Then,• one unit cell (pore chamber plus half of each t,i

the lengths l are calculated from the values of dconnecting throat) is taken to have the sides equal t,i t,i

and the connectivity n . Thereafter, the volume of theto the length of a throat, l , and the volume thus tt
3 chamber is related to the diameters of the connectingbecomes l ;t

throats through• from the connectivity and the porosity, calculate
the mode of the throat diameter / length ratio and

3 2use that over the whole network: ´l 5 (n /2) pd1t t t,i
2 ] ]]V 5 O l (6)(l pd /4). c t,it t 2 4i

This will give a network with the desired porosity,
and the pore length can be found from the resulting i.e. it is equal to half of what would be the volume of
relation: the connecting throats if these were circular cylinders

having diameters d and lengths l .] t,i t,il n pt t
] ] At steady state, these assumptions are similar to5 (4)œd 8´t the assumptions of zero-volumed chambers and

straight, uniform pore throats, as used by Meyers andStrictly, since the above derivation is based on
Liapis [24,25]. The two approaches are mathemati-average values, the relation will not in general be
cally equivalent, but in this work both transient andvalid for a pore size distribution, so the use of Eq.
steady-state situations are considered.(4) for a pore size (and coordination number)

Our assumption about perfectly mixed pore cham-distribution will be considered as a perturbation.
bers would be approximately satisfied as long as theAssuming constant pore sizes and coordination num-
characteristic times for diffusive mixing in thebers throughout the network is a kind of effective
chambers is much smaller than the characteristicmedium theory (EMT) approximation [29,30]. Bur-
times for smoothing out concentration differencesganos and Sotirchos [31] used EMT and smooth field
between adjacent chambers. Ideally, the assumptionapproximation to obtain the more accurate expres-
would be true for a network having very narrowsion (as given by Friedman and Seaton [32]):
throats connecting the chambers.

2kl l n pt t
]] ]5 (5)2 8´kd lt 2.3. Network size and topology
EMT approximations have successfully been used
for calculating network average properties, e.g. by To enable calculation of effective properties, the
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network must be chosen sufficiently large, and in The geometry of the medium may also have to be
general, it should be (much) larger than the largest accounted for by adjusting the pore topology, cf. the
heterogeneities. However, for some purposes, the work by Meyers and Liapis [24,25] where the
calculations can be done using smaller networks, and network includes, apart from an intraparticle pore
by averaging several calculations. The choice of cluster, an irregular ‘‘interstitial’’ cluster which
network size will thus strongly depend on the type of accounts for particle shape and boundary conditions
material. As discussed above, for a network ap- for diffusion and convection inside the particle in the
proaching the percolation threshold, the size of the fixed bed.
heterogeneities approach infinity. This means that we
can expect numerical difficulties in calculating effec-
tive properties for such a network. In Fig. 1 the 3. Mercury porosimetry
importance of slab thickness for a mercury intrusion
simulation is illustrated. The thicker the slab, the Mercury porosimetry is a way of obtaining in-
more pores are shadowed, and so the intrusion formation about the pore structure of a material. The
occurs at a higher pressure for thick slabs compared sample is evacuated using a vacuum and placed in
to thin ones. The intrusion curves could be smoothed liquid mercury. Pressure is increased, and due to the
by repeating the intrusion for another realization of fact that mercury does not wet most samples, it will
the pore network and calculating the average intru- not go into a pore until the pressure is equal to or
sion curve. In practice, the relevant slab size can be larger than the capillary pressure corresponding to
found from simulation series such as the ones in Fig. that pore size.
1 and the size is chosen where the effect is ‘‘small Usually some form of the Washburn [34] equation
enough’’ in order to calculate the effective properties is used:
of a large sample. Here it should be noted that

4g cos u
sometimes one may not be interested in the results ]]]P 5 (7)dfor an infinite slab, but for a thinner slab, represent-
ing the finite geometry of the physical system. where g is the surface tension at the meniscus, d is
Again, more effort in this area should be made once the pore diameter (assuming circular cylindrical
the type of pore structure of the actual medium is pores) and u is the contact angle between the
identified and relevant assumptions can be made. mercury and the pore wall.

The experimental pressure–volume values are then
usually interpreted by applying the equation to the
recorded pressure, giving a pore size distribution,
thus implicitly assuming a model with parallel
capillaries. However, often such a model is a rough
simplification of the actual pore structure [5]. The
use of a pore network is an important step towards
more realistic models. Lane [1] has investigated
mercury porosimetry with a pore network model, and
Loh [35] and Meyers [36] have used pore network
models for characterizing chromatography media.

The network used here for mercury intrusion is a
rectangular, three-dimensional slab, with one side
exposed to the external mercury source. The opposite
side is closed, thus introducing a local change in
pore connectivity, so it is important to select the size

Fig. 1. Mercury intrusion into a porous slab with a connectivity of
of the network sufficiently large not to let this2 and a pore size distribution with m 5 50 nm, a 5 b 5 0.9.v v v
change unintentionally influence the result. TheThe slab size is 35 3 35 3 n , where n is varied from 3 (shallowz z

curves) up to 35 (steep curves). number of model pores in this direction could be
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thought of as a characteristic depth of the model
porous medium, and could correspond to the particle
radius for a porous particle, or the distance between
macropores [37] in a particle with a bidisperse pore
size distribution. The remaining four sides have
natural (periodic) boundary conditions.

From a macroscopic point of view, the relation-
ship measured is a pressure–volume curve. Also on
the pore level there is a pressure–volume relation-
ship, e.g. according to the Washburn equation (Eq.
(7)). For a straight, circular cylindrical pore, the
relationship is a rectangular function, with zero
intrusion volume until the point where pressure is
high enough according to Eq. (7) (the ‘‘critical’’
pressure) and at that point it is completely filled. For Fig. 2. Calculated cumulative mercury intrusion volume versus

applied pressure. The parameter values for the reference case are:conical pores, the pressure–volume curve will de-
m 5 50 nm, a 5 b 5 0.5 and n 5 5. By perturbing onev v v Tpend on the direction in which the pore is filled.
parameter at a time, with the values given in the figure, it is

From the narrow end it will be rectangular, since any observed that the intrusion curve varies in different ways depend-
mercury coming in will be able to fill the whole ing on the parameter perturbed. That indicates that it could be
pore. From the wide end, it will be a continuous possible to determine unique parameter values when fitting the

model curve to experimental data.function, modelling that the pore will be filled over a
range of pressures.

For the case of rectangular pore pressure–volume eters gives rise to differently shaped curves. This
curve, we need only to record whether or not a pore indicates that the simultaneous estimation of the
is filled. The nature of the intrusion process lends network parameters is possible by fitting the calcu-
itself to a recursive modelling approach, and the lated curve to experimental data. The effect of
algorithm works by tracking the continuous path of connectivity seems to be relatively weak, though, so
mercury from the outside surface and into the pore it would be beneficial if one could get an indepen-
network. When a meniscus which is a candidate for dent estimate from e.g. microscopy.
expansion is found, it is tested by comparing the
current pressure and the critical pressure for the pore
which is a candidate for being filled. If a pore gets
filled (or already was filled) its menisci are tested 5. Transient and steady-state diffusion in the
likewise, otherwise that branch is exhausted and the network model
‘‘tracker’’ can safely jump up one recursive level.
The process of intrusion makes the recursive ap- Loh [35], Loh and Wang [38] and Meyers [36]
proach intuitively appealing, and there is need for have studied size exclusion in their network models,
one single scan per pressure, compared to an itera- by calculating accessible volume for a given solute
tive program like that of Loh [35], where the size. Meyers and Liapis [24,25] and Meyers [36]
network must be scanned several times for each have calculated the convection and diffusion for both
pressure point until no change occurs. small and large molecules under unretained as well

as adsorbing conditions in a pore network at steady
state. Here, the transient and steady-state diffusion of

4. Mercury intrusion simulation results small and large molecules in a network is studied.
The molecular diffusivity is assumed constant and

Mercury intrusion was simulated for a reference the molecules are unretained. The driving force for
case which was then perturbed (Fig. 2). The re- diffusion is the concentration difference between
sulting curve family shows that changing the param- connected pore chambers. Size exclusion effects are
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i, jaccounted for, and the following assumptions are where a is a geometric hindrance factor based on
also made: the molecule size and pore size and shape. For a
• the pore chambers hold all of the pore volume; spherical molecule in a circular cylinder the equation
• the resistance to mass transfer lies in the pore

i, j i, j 4
a 5 (1 2 l ) (13)throats.

This is equivalent to saying that the pore chambers i, j i, jis used, where l 5 d /d is the ratio of thesol tcan be considered as perfectly stirred tanks, and that i, jmolecule diameter d to the diameter d of thesol tthe mass transfer between tanks occur through zero-
throat between chambers i and j. It is equivalent tovolume pipes between connected tanks. The mass
the equation of Spry and Sawyer [9] as used byflux is proportional to the pore diffusivity, to the
Zhang and Seaton [12], and it follows closely thethroat cross-section area, and to the difference be-
relation due to Renkin [6]:tween the concentrations of the connected chambers.

Since the network consists of discrete pores, the i, j i, j 2 i, j i, j 3
a 5 (1 2 l ) (1 2 2.104l 1 2.089(l )

corresponding model is also discrete. The material
i, j 5

2 0.948(l ) ) (14)balance for a pore chamber can be written as

i j idc (c 2 c )i i, j i, j] ]]] The molecular diffusivity is estimated using theV 5OD A (8)c p i, jdt Dxj Stokes–Einstein equation:

where the superscript i denotes a chamber according kTi ]]]D 5 (15)to some numbering system and V is the volume of mc 3pmdi, j solthat chamber. A denotes the cross-sectional area of
i jthe throat connecting chambers i and j, c and c are In order to evaluate the properties of the network,

i, jthe chamber concentrations and Dx is the corre- the following numerical experiment is carried out.
sponding chamber–chamber distance or throat Typical boundary and initial conditions are:
length, which is taken to be the characteristic length • Initial concentration of zero everywhere.
for the concentration gradient. The summation is • One side of the rectangular 3D slab network is
thus carried out over all throats j connected to the exposed to a finite, constant, non-zero concen-
chamber i. Eq. (8) at steady state is similar to the tration c starting at t 5 0.0
approach by Meyers and Liapis [24]. • The concentration in the pores at the opposite side

Defining a conductance matrix E with off-diagonal of the slab is held at zero.
elements: • The remaining four sides have periodic boundary

i, j i, j conditions, meaning that a mass flow through aD Ap throat pointing outwards comes in again through]]]E 5 (9)i, j i i, jV Dxc an identical throat on the opposite side. This
condition introduces a local correlation of lengthand the diagonal elements defined by
equal to the slab dimensions in those directions.

Those conditions mean that we have an emptyE 5 2OE (10)i,i i, j
j±i network, which we expose with a concentration step,

and we follow the concentration evolution over time.
we get

From this concentration evolution c x , y , z , t wes di j k

dc calculate an average concentration profile:
]5 Ec (11)dt

nn yx

with the vector c with all chamber concentrations. OOc x , y , z , t V x , y , z , ts d s di j k c i j k
i51j51In order to account for steric hindrance effects, the
]]]]]]]]]c z , t 5 (16)s d navg k n yxpore diffusivity is defined by OOV x , y , z , ts dc i j ki, j i, j

i51j51D 5 a D (12)p m
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For natural reasons, this sum will approach a steady- and the median is reported, in order to avoid
state solution as t → `. possible outliers.

The applied concentration step constitutes an input These effective diffusivities D and D may orss tr

step to the model and the output is the resulting may not be equal. For homogeneous media and for
concentration profile and the flux through the slab. networks with high connectivity they are equal, but
The advantage of using a step is that both a transient for networks having low connectivities they differ,
response and a steady-state solution are obtained. which indicates that the diffusion is non-Fickian as
The choices of conditions should not be considered mentioned above. Taking restricted diffusion into
as an attempt to model the actual physics, but is a account, this can be a local effect, and possibly not
simple computational experiment in order to identify easily distinguished from other simultaneously oc-
the dynamic and steady-state properties of the net- curring phenomena.
work.

By choosing the network sufficiently large, effec-
5.1. Comparison with finite differencestive medium properties can be found. The network

size must then be much larger than the
The model for heterogeneous media should beheterogeneties (e.g. due to varying pore sizes). Note

able to handle homogeneous media as a special case,that the calculations have been done for an unre-
and the above network formulation is indeed capabletained solute. One way of interpreting the results
of that. Consider a discretization in space of Fickswould be to calculate an effective diffusivity for the
second law for a pseudohomogeneous medium withnetwork.
the effective diffusivity D :effThis has been done in two ways:

• By calculating it using a version of Ficks’ first
≠c 2]law for the steady-state profile 5 D = c (20)eff≠t

J Dz
]]D 5 (17) using finite differences on a equidistant (Dx 5 Dy 5ss Dc

Dz 5 h) cubic grid. We use Cartesian coordinates for
where D is the effective diffusivity, J . 0 the whichss

flux through the network at steady-state, Dz is the
2 2 2thickness of the slab and Dc the concentration ≠ c ≠ c ≠ c2 ] ] ]= c(x, y, z, t) 5 1 1 (21)2 2 2difference over the network in the z-direction. ≠x ≠y ≠z

• By comparing the time to reach e.g. steady state
with a profile calculated with a known (effective) Using second-order difference approximations we
diffusivity. Fourier’s number is the quantity get
which characterizes a process like this, and by

2 2defining the fractional steady state to be reached = c(x, y, z, t)h ¯ c(x 1 h, y, z, t) 2 2c(x, y, z, t)
at a time t for a network or slab of thickness Dzfss 1 c(x 2 h, y, z, t)
and a transient diffusivity of D :tr

c(x, y 1 h, z, t) 2 2c(x, y, z, t) 1 c(x, y 2 h, z, t)
D ttr fss
]]Fo 5 (18) c(x, y, z 1 h, t) 2 2c(x, y, z, t) 1 c(x, y, z 2 h, t)2(Dz)

6
jIf this is to be compared to a reference case with 5O(c 2 c) (22)

j51the corresponding variables t , Dz and D , weref ref ref

get
where the index j could denote the throats around a

2 chamber in a pore network (cf. Eq. (8)). That is, onet (Dz)ref
]]]D 5 D (19)tr ref obtains the same discretization as for the pore2t Dzfss s dref

network model used here, if it is simplified to the
same geometry.Typically, D is calculated at a number of t ,tr fss
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5.2. Calculation of transient diffusivity 6. Diffusion simulation results

If the model slab is truly homogeneous, the In Fig. 3, the average concentration profile evolu-
problem is simplified to one space dimension, due to tion in the slab is shown. The transport rate into and
symmetry. Scaling the variables with the slab size out from the slab are plotted in Fig. 4.
Dz, some characteristic time Dt and the concentration The connectivity and solute size was varied, and
step c , we get the other conditions for the simulations are:0

Z 5 z /Dz
T 5 t /Dt (23) Parameter Value
C 5 c /c0

m , throat diameter (nm; volume mode) 50vand the equation becomes a , left distribution parameter 0.5v
2 b , right distribution parameter 0.5≠C ≠ C v2] ]]5 Fo= C 5 Fo (24) ´, porosity 0.72≠T ≠Z

and the Fourier number defined by
Figs. 5 and 6 show steady-state diffusivity and theD Dt

]] ratio between steady-state and transient diffusivitiesFo 5 (25)2(Dz) for various connectivities and molecule sizes. The
diffusivities are normalized by the estimated freethe above boundary and initial conditions become
molecular diffusivity. The data are somewhat uncer-

C(Z, T 5 0) 5 0 0 # Z # 1 tain, especially close to the percolation threshold,
C(Z 5 0, T ) 5 1 T . 0 (26) because at the threshold, the size of the
C(Z 5 1, T ) 5 0 T . 0 heterogeneties approach infinity, and thus a finite

network cannot be expected to give good effectivewhich can be solved (see e.g. Crank [21] or Carslaw
properties. However, it is clear that for low values ofand Jaeger [39]) to give
the connectivity, the ratio of steady-state to transient

` diffusivity is very low, indicating non-Fickian diffu-2 2 2]C(Z, T ) 5 1 2 Z 2O exp(2i p Fo T ) sin(ipZ) sion in the sense mentioned above. At high values ofipi51
the connectivity (well-connected networks) the ratio

(27)
approaches the value of the network porosity for

This solution is suitable for finding t in Eq. (19).ref

Fig. 4. Transport rate in (top) and out (bottom) of slab versus
Fig. 3. Average concentration profile evolution in the slab. time.
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Fig. 5. Simulated steady-state diffusivity relative to molecular Fig. 7. Normalized steady-state diffusivity as a function of solute
diffusivity as a function of pore connectivity. Solute sizes are 0.1 size to pore size ratio for various pore connectivities. The mode of
nm (s), 1 nm (3), 2 nm (1), 5 nm (w), 10 nm (n), 20 nm (x), the pore diameter is taken to be the characteristic pore size. n 5 2t

25 nm (v) and 30 nm (x). (s), 3 (3), 4 (1), 5 (w), 6 (n), 7 (x), 8 (v) and 9 (x). The
dotted curves represent solute size dependence according to Eq.
(13).

small solutes, and a lower value for larger solutes,
reflecting that large solutes do not have access to all threshold connectivity doubles (from 1.5 to 3) for
of the pore space. Also, the percolation threshold is a uncorrelated pore sizes.
function of pore structure and molecule size, which Moreover, the influence of hindrance (Eq. (13)) is
is seen by the fact that the steady-state diffusivity significant already when the molecule size is of an
approaches zero at low connectivities, and the larger order of magnitude smaller than the pore.
the molecule is, the higher must be the connectivity In Fig. 7, the steady-state diffusivity is plotted
in order to allow for transport through the material. against solute size with the connectivity as a parame-
This can be understood by considering the number of ter. The diffusivity is normalized by dividing it by
pore throats that the solute is able to penetrate. If the the free molecular diffusivity, since that is a function
solute can penetrate 50% (number) of the throats, the of solute size. The solute size is expressed in relation

to the mode of the pore throat diameter. The
dependence of solute size on pore diffusivity as
given by Eq. (13) is indicated by dotted lines. This
means that the network effects are somewhat iso-
lated, and the degree of deviation from the dotted
lines can be regarded as a network effect, or ‘‘tor-
tuosity’’, loosely speaking. It is noted that the
influence seems to be strongest for the lowest
connectivity and that the curves with high connec-
tivities represent networks where the heterogeneties
are due to pore size distribution only, and not due to
network topology.

7. Conclusions
Fig. 6. Ratio between steady-state and transient diffusivity as a
function of pore connectivity. Symbols as in Fig. 5. A set of tools for doing a priori calculations of
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i j 3effective diffusivity in porous media has been pre- c , c concentration in chamber i, j mol /m
3sented. c average concentration for a mol /mavg

If a pore network representing the pore structure is slice of the network
3known, the diffusivity can be found using a diffusion Dc concentration difference across mol /m

model together with the network model, and tran- slab
sient and steady-state diffusivities can be calculated. C dimensionless concentration 2

For the more realistic case when the pore structure d diameter m
is unknown, a model for mercury intrusion together d diameter of a spherical solute msol
with the network model can be used for estimating d pore throat diameter mt

i, jthe network parameters. However, additional data d pore throat diameter between mt
such as micrographs, if available, should be used in chambers i and j

2order to be able to make reasonable assumptions D diffusivity m /s
2about the pore structure. An important observation D free molecular diffusivity m /sm
2made from the model studies was that the pore D pore diffusivity m /sp
2connectivity influences the mercury intrusion curve D reference diffusivity m /sref
2only weakly if the pore size distribution is narrow. D steady-state diffusivity m /sss
2The parameters m , a , b and n influence thev v v t D transient diffusivity m /strintrusion curves in distinct ways, so the estimation of E conductance matrix 1 /s

those parameters from experimental data seems Fo Fourier number 2
possible taking into account the above. h finite difference discretization m

The transient and steady-state effective dif- length
fusivities were calculated using the pore network.

i, j pore chamber number 2
Close to the percolation threshold the transient 2J molar flux mol /m s
diffusivity to steady-state diffusivity ratio diverges,

k the Boltzmann constant J /K
and this can be explained by the fact that the pores 223¯ 1.38066 3 10 J /K
accessible for transport form a fractal. For molecules

l pore throat length mtsmaller than the smallest pore in the network,
m volume-based mode of pore mvpercolation threshold is at a connectivity of about

size distribution1.5. For larger molecules, where only some fraction
n pore connectivity 2tof the network is accessible, the threshold is shifted
P pressure Paup towards higher connectivity so that the set of
r transport rate mol / saccessible pores has a connectivity of about 1.5.
t time sThe simulations show clearly that the diffusive
t reference characteristic time srefproperties of the network quickly deteriorate when
t characteristic time until frac- sfssthe connectivity decreases. Then the non-Fickian

tional steady statebehaviour becomes evident and the diffusivity drops
T dimensionless time 2markedly. It would thus be advantageous to design
T temperature Kmedia with a not too low connectivity. Moreover, the

i 3V volume of chamber i mphenomena observed with the present diffusion c

x spatial coordinate mmodel cannot be modelled using Fick’s law with a
i, j

Dx characteristic length between mconstant effective diffusivity.
chambers i and j

2 2kx l mean square distance m
Dz slab thickness m

8. Nomenclature Dz reference slab thickness mref

Z dimensionless spatial coordinate 2
i, j 2A throat cross-area between cham- m a left pore size distribution pa- 2v

bers i and j rameter
3 i, jc concentration mol /m a hindrance factor between cham- 2

bers i and j
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